Survey on Machine Transliteration and Machine Learning Models
نویسنده
چکیده
Globalization and growth of Internet users truly demands for almost all internet based applications to support local languages. Support of local languages can be given in all internet based applications by means of Machine Transliteration and Machine Translation. This paper provides the thorough survey on machine transliteration models and machine learning approaches used for machine transliteration over the period of more than two decades for internationally used languages as well as Indian languages. Survey shows that linguistic approach provides better results for the closely related languages and probability based statistical approaches are good when one of the languages is phonetic and other is nonphonetic.Better accuracy can be achieved only by using Hybrid and Combined models.
منابع مشابه
Machine Transliteration using Target-Language Grapheme and Phoneme: Multi-engine Transliteration Approach
This paper describes our approach to “NEWS 2009 Machine Transliteration Shared Task.” We built multiple transliteration engines based on different combinations of two transliteration models and three machine learning algorithms. Then, the outputs from these transliteration engines were combined using re-ranking functions. Our method was applied to all language pairs in “NEWS 2009 Machine Transl...
متن کاملMachine Learning Based English-to-Korean Transliteration Using Grapheme and Phoneme Information
Machine transliteration is an automatic method to generate characters or words in one alphabetical system for the corresponding characters in another alphabetical system. Machine transliteration can play an important role in natural language application such as information retrieval and machine translation, especially for handling proper nouns and technical terms. The previous works focus on ei...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015